The effect of normal load on polytetrafluoroethylene tribology.

نویسندگان

  • Peter R Barry
  • Patrick Y Chiu
  • Scott S Perry
  • W Gregory Sawyer
  • Simon R Phillpot
  • Susan B Sinnott
چکیده

The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T-θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate...

متن کامل

Evaluation of PTFE Composites with Mineral Tailing Considering Friction, Wear and Cost

The tribological test with Pin-On-Disc configuration measures friction and wear properties in dry or lubricated sliding surfaces of a variety of materials and coatings. Polymeric matrix composites loaded with mineral filler were used, 1%, 3%, 10%, 30%, and 50% mass percentage of filler, to reduce the material cost by using mineral tailings. Using a pin-on-disc tribometer to quantify coefficient...

متن کامل

Polymeric Nanocomposites for Tribological Applications

Polymer nanocomposites operate in applications where fluid and grease lubricants fail, and have superior tribological performance to traditional polymer composites. Nanoparticle fillers have been a part of notable reductions in the wear rate of the polymer matrix at very low loadings. Despite instances of remarkable wear reductions at unprecedented loadings (3 000 times at 0.5% loading in one c...

متن کامل

The effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice

Objective (s): Bacterial infection is an important cause of delayed wound healing. Staphylococcus aureus (S. aureus) is the main agent causing these infections. Zinc Oxide (ZnO) nanoparticles have antibacterial activity and also accelerate the wound healing process. The aim of the present study is to evaluate the effect of ZnO nanoparticles on bacterial load reduction of the wound infection.  M...

متن کامل

Load Model Effect Assessment on Optimal Distributed Generation Sizing and Allocation Using Improved Harmony Search Algorithm

The operation of a distribution system in the presence of distributed generation systems has someadvantages and challenges. Optimal sizing and siting of DG systems has economic, technical, andenvironmental benefits in distribution systems. Improper selection of DG systems can reduce theseadvantages or even result in deterioration in the normal operation of the distribution system. DGallocation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 14  شماره 

صفحات  -

تاریخ انتشار 2009